Molecular dynamics simulation of lithium diffusion in Li2O–Al2O3–SiO2 glasses
نویسندگان
چکیده
The molecular dynamics (MD) computer simulation technique has been used to study the structure of lithium aluminosilicate (LAS) glasses and the diffusion of lithium ions. Five kinds of lithium aluminosilicate glasses with different R (ratio of the concentration of Al to Li) values are simulated. The structural features of the simulated glasses are analyzed using Radial Distribution Functions (RDFs) and Pair Distribution Functions (PDFs). With the increase of R, the environments of the Li ions alter from bonding to non-bridging oxygen to bonding to the bridging oxygen associated with tetrahedral Al. The diffusion coefficients and activation energy of lithium ion diffusion in simulated lithium aluminosilicate glasses were calculated and the values are consistent with those in experimental glasses. When R equals 1.00, lithium ions have the lowest activation energy for diffusion. The relationship between the activation energy for lithium diffusion and the composition of these glasses is similar to that previously observed for sodium in sodium aluminosilicate glasses. D 2004 Elsevier B.V. All rights reserved. PACS: Diffusion 66.10-x; Glass 81.05-Kf; Li-ion batteries 82.47-Aa
منابع مشابه
Effect of P2O5 on Crystallization Behavior and Chemical Resistance of Dental Glasses in the Li2O-SiO2-ZrO2 System
Commercial dental lithium disilicate based glass-ceramics containing various amounts of P2O5 were synthesized. Regarding the crystallization behavior and physico-chemical properties of the glasses, the optimum percent of P2O5 was determined.as 8 %wt. Crystallization behavior of the glasses was investigated by X-ray diffraction (XRD) and differential thermal analysis (DTA). The micro-hardness a...
متن کاملMicrostructure and Properties of Li2O-Al2O3-SiO2-P2O5 Glass-Ceramics
Serials Li2O–Al2O3–SiO2 matrix glasses and glass-ceramics with different content of P2O5 were prepared by conventional melt cooling method and crystallization process. The effects of P2O5 content on microstructure and properties such as viscosity, melting temperature and coefficient of thermal expansion (CTE) of Li2O–Al2O3–SiO2–P2O5 glasses and glass-ceramics were investigated by DSC, XRD, CTE ...
متن کاملCO2 capture properties of lithium silicates with different ratios of Li2O/SiO2: an ab initio thermodynamic and experimental approach.
The lithium silicates have attracted scientific interest due to their potential use as high-temperature sorbents for CO2 capture. The electronic properties and thermodynamic stabilities of lithium silicates with different Li2O/SiO2 ratios (Li2O, Li8SiO6, Li4SiO4, Li6Si2O7, Li2SiO3, Li2Si2O5, Li2Si3O7, and α-SiO2) have been investigated by combining first-principles density functional theory wit...
متن کاملMolecular dynamics studies of straight-chain alkanes diffusion in SiO2 ceramic versus Bosanquet formula
Molecular Dynamics (MD) simulations were applied to calculate self-diffusion coefficients (Di ) and heats of adsorption for ethane, propane and n-butane. The simulations were done in temperature range of 300-525 K for various concentrations inside the pores of silicalite type zeolite. The calculated values of self-diffusion coefficients and heats of adsorption resulted from the current wo...
متن کاملComplete identification of alkali sites in ion conducting lithium silicate glasses: a computer study of ion dynamics.
The available sites for ions in a typical disordered ionic conductor are determined. For this purpose we devised a straightforward algorithm which via cluster analysis identifies these sites from long time ionic trajectories below the glass transition. This is exemplified for a lithium silicate glass (Li2O)(x)(SiO2)((1-x)) for x=0.5 and x=0.1. We find for both concentrations that the number of ...
متن کامل